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Abstract. We review our knowledge of the interstellar turbulence emphasing mainly the-
oretical aspects. Starting with a basic description of incompressible hydrodynamical and
magnetized turbulence, we describe our current understanding of highly supersonic isother-
mal turbulence thought to be relevant in the context of molecular clouds and finally consider
the more complicated but more realistic multi-phase magnetized flows.

Key words. Hydrodynamics - Instabilities - Interstellar medium: kinematics and dynamics
- structure - clouds

1. Introduction

Turbulence is an ubiquitous process in astro-
physics. Indeed most astrophysical fluids are
thought to be turbulent. As a consequence,
turbulent processes have many important im-
plications ranging from cosmic rays to accre-
tion disks, stars and planets. In spite of its
broad range of applications, turbulence is still
poorly understood. Here we give a short re-
view of our knowledge of the interstellar tur-
bulence. Recent and comprehensive reviews
of interstellar turbulence particularly stressing
its role on the star formation process can be
found in Elmegreen & Scalo (2004), Scalo &
Elmegreen (2004), Mac Low & Klessen (2004)
and McKee & Ostriker (2007).

The plan is as follows. First we quickly de-
scribe some general principles of incompress-
ible turbulence, a paradigm which is of great
importance for terrestrial flows. Since interstel-
lar turbulence is both magnetized and highly
compressible, we describe specifically some
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aspects of the magnetized incompressible tur-
bulent flows and of the compressible ones,
distinguishing between the isothermal and the
multi-phase flows.

2. Incompressible and unmagnetized
turbulence

For obvious reasons, incompressible, unmag-
netized turbulence has received considerable
efforts and attention. It constitutes the refer-
ence against which other types of turbulence
will usually be compared. Many excellent text-
books have been devoted to this topic (e.g.
Monin & Yaglom, 1975).

A fluid of viscosity ν becomes turbulent
when the rates of viscous dissipation which is
∝ ν/L2 at the energy injection scale, L, is much
larger than the energy transfer rate ∝ V/L,
where V is the velocity dispersion at the scale,
L. The ratio of these 2 rates is the Reynolds
number Re = VL/ν. In general, when Re is
larger than 10-100 the system becomes turbu-
lent. As the Reynolds number increases, the
flow becomes more chaotic. Typically in astro-
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physics one expects the flows to have Reynolds
number larger or of the order of 106 − 108.

Kolmogorov theory (Kolmogorov 1941)
provides a scaling law which is true in the
statistical sense and provides a relation be-
tween the relative velocity vl of fluid elements
and their separation l, namely vl ' l1/3. This
stems for the following facts. Let ε be the en-
ergy flux injected at large scale in the flow,
ε ' V3/L. As long as the dissipation term,
' ν/l2 is small, it is expected that ε remains
unchanged being transmitted to smaller scales
by the non linear coupling between the scales.
Thus, vl ∝ l1/3. An equivalent description is to
express the spectrum E(k) as a function of the
wavenumber k ∝ 1/l. The total energy V2

L can
also be written as

∫
E(k)dk, where E(k) is thus

the square of the Fourier transform of Vl. Thus
E(k)k ∝ l2/3 and E(k) ∝ k−5/3. This relation
is now well observed both in laboratory turbu-
lence and numerical simulations. An important
consequence is that most of the energy is con-
tained at large scales.

From the velocity-size relation, one can es-
timate the dissipation scale. Using this rela-
tion, the Reynolds number can be written as
Re = VL/ν ∝ L4/3/ν leading to Re(l) =
(l/L)4/3Re(L). The dissipation arises at the
scale, ld, to which the Reynolds number is of
the order of 1. Thus, ld ' LRe(L)−3/4. This
shows that for a Reynolds number of the order
of 108, the ratio between the injection and dis-
sipation scales is about 106. A straightforward
consequence is that numerically, it is impossi-
ble with the present computing power to simu-
late flows having Reynolds number larger than
' 103 − 104 without using subgrid modeling.

In order to get a complete description of
the flow statistics, one needs to predict the ex-
ponent of the structure functions defined as
vp

l . The original Kolmogorov theory which as-
sumes that vl

l ∝ lp/3 has turned to be too sim-
plistic and deviations from it have been firmly
established. The most successful approach to
date has been developed by She & Leveque
(1994). Considering a self-similar hierarchy of
eddies, they were able to establish a robust pre-
diction for the scaling exponents which appear
to be compatible with the measurements per-
formed in laboratory turbulent experiment.

3. Incompressible magnetized
turbulence

As already stated above, magnetic field plays
an important role in a lot of astrophysical
flows. In particular, the diffuse interstellar
medium appears to be permeated by a mag-
netic field whose intensity is of the order of
6µG (Heiles & Troland 2005). This implies
that the magnetic energy is typically larger than
the thermal energy by a factor of a few.

While the simple Kolmogorov dimensional
scaling relation, described above, has proven
to be very robust, MHD flows appear to be
much more difficult to understand. Indeed, de-
spite more than 35 years of analytical, nu-
merical and observational investigations, the
energy spectrum of MHD turbulence remains
a subject of controversy. The first attempt
to establish such a spectrum has been done
by Iroshnikov (1963) and Kraichnan (1965).
Based on the fact that for incompressible
MHD turbulence, any function v ± b(r ± Vat)
is a solution of the MHD equations, imply-
ing that Alfvén wave packets traveling in the
same direction along the magnetic field are
not interacting, they infer a power spectrum
E(k) ∝ k−3/2, thus slightly shallower than the
Kolmogorov one. An essential assumption of
the Iroshnikov-Kraichnan approach is that the
eddies are isotropic, i.e. have the same spa-
tial extension in the field-parallel and field-
perpendicular directions. However, numerical
and observational data accumulated for the
last 30 years indicate that in MHD turbu-
lence the energy transfer occurs predominantly
in the field perpendicular direction (Biskamp
2003). This raises the question whether the pic-
ture proposed by Iroshnikov and Kraichnan is
grasping the essential physical mechanisms.

An important progress has been performed
by Goldreich & Sridhar (1995) who have de-
veloped a theory which takes into account the
anisotropy of the eddies in MHD. They sug-
gested that as the energy cascade proceeds to
smaller scales, turbulent eddies progressively
become elongated along the large-scale field.
As a consequence, they found that the en-
ergy transfer time is reduced, compared to the
Iroshnikov-Kraichnan approach, and identical
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to the Kolmogorov estimate. This leads them
to a scaling for the field-perpendicular energy
spectrum, E(k⊥) ∝ k−5/3

⊥ . More recently, this is-
sue has been investigated further in various an-
alytical and numerical studies (e.g. Cho et al.
2002 ; Boldyrev, 2005 ; Boldyrev 2006 ; Lee
et al. 2010). and appears to still be a matter of
debate. Indeed, even the question of the univer-
sality of the energy spectrum in incompressible
MHD turbulence appear to be unsolved.

4. A highly compressible ISM

The interstellar medium is not expected to
be incompressible. Indeed, during the galac-
tic cycle, the interstellar medium density varies
from 10−2 cm−3 up to eventually stellar densi-
ties which represents a density enhancement of
more than 25 orders of magnitude. Of course
this is not achieved in a single step. Instead, the
fluid particles endergo a series of contraction.

Traditionally, the ISM is divided in roughly
four phases. The hot ionized gas (HIM) whose
density and temperature are about 10−2 cm−3

and 106 K, the warm neutral medium (WNM)
which is roughly hundred times denser and
colder than the HIM, the cold neutral medium
itself roughly hundred times denser and colder
than the WNM. The last phase, is the molecu-
lar hydrogen. Its typical density goes from 103

to 106 cm−3 or more while its temperature is
about 10-30 K.

Due to their very high temperatures which
lead to sound speeds respectively equal to
about 100 km s−1 and 10 km s−1, the HIM and
the WNM are typically subsonic or transsonic.
The CNM and the molecular gas have much
lower sound speeds of the order of 1 km s−1

and 0.2 km s−1 respectively. Given the velocity
dispersion observed in the molecular gas, the
rms Mach number is typically of the order of
4×(L/1pc)0.5, where L is the size of the molec-
ular clouds (Larson 1981). Thus, it appears that
for the cold gas, turbulence is strongly super-
sonic.

4.1. Compressible isothermal turbulence

The most common assumption is to assume
that the gas is isothermal. Indeed, this appears

to be a reasonable assumption for the dense
molecular gas and most of the studies have
been assuming isothermality. The first impor-
tant point to be stressed, is that a new quan-
tity is necessary to characterize a compress-
ible flow, namely the Mach number M. It is
worth recalling that in a shock of Mach num-
ber,M, the isothermal gas undergoes a density
enhancement equal to M2. For example, this
implies that for a molecular cloud of few par-
secs in size, density contrasts of the order of
100 are common.

Given the complexity of the problem, it is
not surprising that very few results have been
rigorously established analytically and most
of our understanding comes from numerical
simulations, which have been performed dur-
ing the last two decades. The biggest simula-
tion performed to date is the one by Kritsuk
et al. (2007) and has 20483 computing cells.
In the one dimensional case, one expects the
power spectrum of v, the velocity to be ∝
k−2. The reason is that a Fourier transform of
an Heaviside function is proportional to k−1.
Thus the energy spectrum is slightly stiffer than
the Kolmogorov spectrum. In 3D, high resolu-
tion numerical simulations like the ones per-
formed by Kritsuk et al. (2007), one finds that
the powerspectrum of v, is typically ∝ k−3.8

(note that in 3D, the corresponding exponent
for incompressible flow is 11/3). Thus, the ex-
ponent is bracketed by the values of incom-
pressible Kolmogorov turbulence and the value
of the fully compressible Burgers turbulence.
This is not very surprising since even super-
sonic flows tend to have a large energy fraction
in the solenoidal or incompressible modes. A
very interesting issue, also explored by Kritsuk
et al. (2007) relates to the power spectrum
of the corrected velocity, ρ1/3v. This quan-
tity stems for the fact that the energy flux
which for incompressible turbulence is sim-
ply ∝ v3 becomes for compressible fluids ρv3.
Interestingly, Kritsuk et al. (2007) find that the
power spectrum of this quantity has an expo-
nent much closer to 11/3 than the power spec-
trum of v. This raises the question as to whether
the ideas of Kolmogorov can be generalized
and apply to compressible flow as well.
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Density is an important quantity to char-
acterize in compressible flows. It is also of
fundamental importance for many astrophys-
ical problems. Numerical simulations of su-
personic turbulence for which the driving is
performed in the solenoidal modes, have es-
tablished that the density PDF is typically
lognormal, i.e. log ρ has a normal distribu-
tion (e.g. Vázquez-Semadeni, 1994 ; Padoan
et al. 1997). The width of the distribution has
been established to be σ2 = log(1 + b2M2)
where b is a constant of the order of ' 0.5
(Federrath et al. 2008). Thus as the Mach num-
ber is increased, the distribution broadens, im-
plying that the quantity of dense gas increases.
This lognormal distribution plays an important
role in theoretical calculations related to the
star formation problems (Krumholz & McKee,
2005 ; Hennebelle & Chabrier 2008). Another
important quantity to compute is the power
spectrum of ρ since it characterizes the size
distribution of the density fluctuations. In the
subsonic case, the density power spectrum
is found to have an index very close to the
Kolmogorov value (Kim & Ryu, 2005). In the
supersonic case, the spectrum becomes grad-
ually flatter up to very shallow index. This
is probably due to the fact that in supersonic
flows shocked sheets with very stiff boundaries
form. Since they are mathematically equiva-
lent to Dirac function whose Fourier transform
is ∝ k0, this produces very shallow power-
spectrum. A more meaningful quantity to work
with, is log ρ whose powerspectrum turns out
to be close to the 11/3 value even in the su-
personic case. A link between the power spec-
trum and the clump mass spectrum has been
proposed by Hennebelle & Chabrier (2008)
who establish that the exponent, γ, of the mass
spectrum is linked to the exponent, n, of the
power spectrum of log ρ through the relation:
γ = −2 + (n − 3)/3. For n = 11/3, one obtains
γ ' −1.8. This values turns out to be compati-
ble with what has been inferred in observations
(Heithausen et al., 1998) and also in numerical
simulations (Audit & Hennebelle 2010).

Recently, it has been pointed out by
Federrath et al. (2010) that the way turbu-
lence is driven has important consequences on
the flow properties. In particular, they inves-

tigate purely solenoidal and purely compress-
ible forcing. They find that the statistics are
significantly different. In particular, the density
PDF is not exactly a lognormal distribution in
the compressible case developing a high den-
sity tail. The index of the various powerspec-
tra are also different. As for the MHD case,
this raises the question as to whether the com-
pressible turbulence is truly universal. From an
astrophysical point of view, the impact of the
forcing gives raise to the question of its origin
and nature. This also raises the question of how
the clouds is defined and connected to the sur-
rounding medium. To address this last point, it
is necessary to go beyond the simple isother-
mal assumption and treat the proper thermody-
namics of the interstellar gas. Note that Passot
& Vázquez-Semadeni (1998) have shown per-
forming 1D simulations that γ, the adiabatic
exponent, has a drastic influence on the density
PDF. Indeed, as γ decreases below 1, the high
density part of the PDF becomes a power law,
whose exponent becomes gradually shallower,
rather than an exponential. This has been con-
firmed by 3D simulations (Audit & Hennebelle
2010).

Compressible isothermal turbulence has
also been recently investigated (e.g. Padoan
& Nordlund, 1999 ; Vestuso et al., 2003 ;
Beresnyak et al., 2005) mainly by numerical
simulations. It entails a new number which
is usually called β and is equal to the ratio
of the thermal over magnetic pressure. Low β
plasma are dominated by the magnetic energy.
Although different by many aspects to the hy-
drodynamical case, similar features are found,
including strong density fluctuations in the su-
personic case, power spectrum inbetween the
Kolmogorov and the Burgers one. An impor-
tant aspect having wide astrophysical implica-
tion is the correlation between magnetic inten-
sity and density. Passot & Vázquez-Semadeni
(2003) show numerically and analytically that
density and magnetic intensity tend be anti-
correlated in a slow MHD wave while they
tend to be correlated in a fast MHD wave.
Thus in subalfvénic flows, density and mag-
netic field tend to be anti-correlated and cor-
related in supersonic ones.
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4.2. Turbulence in multi-phase flows

As described above, the ISM presents various
phases, meaning that at a given pressure, the
gas can be in a variety of thermodynamical
states. To treat the ISM properly, it is there-
fore necessary to solve an energy equation and
compute the heating and cooling that the fluid
particles undergo.

As one may anticipate, it is even harder
to get exact results regarding the turbulence
properties in this context. Indeed, unlike in in-
compressible and isothermal turbulence, such
a flow is not described only by few numbers,
but depends on cooling and heating processes
which can be complex leading sometimes to
qualitatively new behaviours. One of the most
remarkable is certainly the existence of ther-
mally unstable states (Field, 1965) which gives
raise to the phases. Basically, thermal insta-
bility occurs when the condition ∂P

∂ρ
)L < 0

is fulfilled where L is the net loss function
describing the cooling and heating by radia-
tive processes. Physically this means that con-
sidering density fluctuations, the pressure is
dropping when the density increases implying
that the piece of gas is further compressed by
the external pressure. In a 2-phase flow, at a
given pressure, the gas can be in two differ-
ent states, one diffuse and warm and one dense
and cold (e.g. Wolfire et al., 1995). The two
phases are connected by stiff thermal fronts
whose length, called the Field length, is given
by an equilibrium between the cooling func-
tion and the thermal diffusivity. Various new
scales have thus to be considered such as the
cooling length of the WNM which is the prod-
uct of the sound speed and the cooling time
and the above mentioned Field’s length. Recent
studies have shown that compressible motions
arising in turbulent flows could induce dynam-
ically the phase transition leading to the for-
mation of cold clouds embedded in a warm
confining phase (Hennebelle & Pérault, 1999
; Koyama & Inutsuka, 2000 ; Sanchez-Salcedo
et al., 2002). In 2D and 3D this gives raise to a
state that combines on one hand the picture of
classical turbulent flow but on the other hand
presents cold structures embedded in warm gas
and connected by stiff thermal fronts (Koyama

& Inutsuka, 2002 ; Audit & Hennebelle, 2005
; Heitsch et al. 2006). The cold structures are
found to typically have a velocity dispersion
of the order of the sound speed of the warm
phase in which they are embedded. Since their
internal sound speed is about 10 times lower
than the sound speed of the warm phase, this
implies that collisions at typically Mach ten
are arising leading to further density enhance-
ments. The statistics of the cold structures has
been studied by Hennebelle & Audit (2007).
One striking aspect, is that the mass spectrum
of the CNM structures is very similar to the one
inferred for the clumps in isothermal gas. This
suggests that turbulence is seeding the forma-
tion of structures and that their masses reflect
the mass of the gas within the perturbations.

Interestingly, thermally unstable gas,
which has been inferred from observations
(Heiles 2001) has also been found in numerical
simulations by Gazol et al. (2001) and others.
Audit & Hennebelle (2005) have shown that
as turbulence is increased, the fraction of ther-
mally unstable gas increases at the expense of
the cold gas. They also propose that the shear
is able to stabilize partially the gas against
thermal instability. Generally speaking, the
abundances of the various phases significantly
depend on the dynamics of the flow (Seifrid et
al. 2011).

The various power spectra and structure
functions which have been measured in 2-
phase flows (Kritsuk & Norman, 2004 ;
Hennebelle & Audit, 2007) are relatively sim-
ilar to those measured in standard isothermal
flows although numerical resolution is possi-
bly an issue given the large range of scales in-
volved in this problem.

The influence of the magnetic field in
such a flow has also been investigated. While
Field (1965) considering a simple plane paral-
lel configuration with purely transverse mag-
netic field, suggests that strong magnetic fields
can suppress thermal instability (because the
total pressure, PT , i.e. thermal and magnetic
pressures, can be such that ∂PT

∂ρ
)L > 0 even if

∂P
∂ρ

)L < 0), Hennebelle & Pérault (2000) and
Inoue & Inutsuka (2008) show that if the mag-
netic field is not purely transverse, magnetic
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tension can channel the growing perturbation
along the field lines.

The above mentioned studies have been
performed at relatively small scales (typically
few tens of parsec). Attempting to simulate a
representative part of the Galaxy, simulations
have been performed at much larger scales ('1
kpc) by de Avillez & Breitschwerdt (2005) and
Joung & Mac Low (2006). In these works, the
three phases (HIM, WNM, CNM) are treated
and the supernovae have been introduced, thus
consistently driving the turbulence. The verti-
cal structure of the gas is well described and
gives raise to galactic fountains and chimneys.
The magnetic field is also self-consistently
treated. It is found to have a complex and tan-
gled structures. Another interesting aspects is
that these simulations can reproduce many ob-
served features of the diffuse ISM.

References

Audit, E., Hennebelle, P., 2005, A&A, 433, 1
Audit, E., Hennebelle, P., 2010, A&A, 511, 76
de Avillez, M., Breitschwerdt, D., 2005, A&A,

436, 585
Beresnyak et al., ApJ, 2005, 624, 93
Biskamp, D., 2003, matu.book
Boldyrev, S., 2005, ApJ, 626, L37
Boldyrev, S., 2006, PhRvL, 97, 550
Cho, J., Lazarian, A., Vishniac, E., 2002, ApJ,

564, 291
Elmegreen, B., Scalo, J., 2004, ARA&A, 42,

211
Federrath, C., Klessen, R., Schmidt, W., 2008,

ApJ, 688, 79
Federrath, C., et al. 2010, A&A, 512, 81
Field, G., 1965, ApJ, 142, 131
Gazol, A. et al. 2001, ApJ, 557, 121
Goldreich, P., Sridhar, S., 1995, ApJ, 438, 763
Heiles, C., 2001, ApJ, 551L, 105
Heiles, C., Troland, T., 2005, ApJ, 624, 773
Heithausen et al., 1998, A&A, 331, 65
Heitsch, F. et al. 2006, ApJ, 648, 1052
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